

DATA SHEET

Product Specification

Features

- UP to 1.25Gbps data rate
- Serial ID module on MOD(0-2)
- Duplex LC receptacle optical interface compliant
- International Class 1 laser safety certified
- single +3.3V power supply
- Transmitter disable input
- DDM function implemented
- Operating temperature range 0 to+70°C (Commercial); -40~85°C (Industry)
- HOT-Pluggable
- Receiver loss of Signal Output
- AC coupling of PECL signals
- RoHS Compliance

Application

- Gigabit Ethernet
- Gigabit Fiber Channel

- Switch to switch interface
- Switched backplane applications

Standards

- Compliant with SFP MSA (INF-8074i)
- Compliant with SFF-8472 v9.3
- Compliant with IEEE802.3z Gigabit Ethernet
- Compliant with ITU-T G.695
- Compliant with FC-PI v2.0

	Specifications										
Part NO.	Pack	Rate	Tx(nm)	Pout(dBm)	Rx	S(dBm)	Тор	Reach	Others	Application	
UYS01SRD	SFP	1.25G	850	-9.5~-3	VCSEL	≤-18	-10~70°C	550m	DDM, RoHS	SDH L-1.1	
UYS01L2D	SFP	1.25G	1310 FP	9~-3	PIN	< -20	-10~70°C	20km	DDM, RoHS	SDH L-1.1	
UYS01L4D	SFP	1.25G	1310 FP	-5 ~ 0	PIN	< -23	-10~70°C	40km	DDM, RoHS	SDH L-1.1	
UYS01E4D	SFP	1.25G	1550 DFB	-4 ~-1	PIN	< -20	-10~70°C	40km	DDM, RoHS	SDH L-1.1	
UYS01Z8D	SFP	1.25G	1550 DFB	-2~+3	PIN	< -23	-10~70°C	80km	DDM, RoHS	SDH L-1.1	
UYS01B2D	SFP	1.25G	1550 DFB	0~+3	APD	< -31	-10~70°C	120km	DDM, RoHS	SDH L-1.1	

Ordering information

Absolute Maximum Ratings

Parameter	Symbol	Unit	Min	Max
Storage Temperature Range	Ts	°C	-40	+85
Relative Humidity	RH	%	5	95
Power Supply Voltage	Vcc	V	-0.5	+4

Recommended Operating Conditions

Parameter	Symbol	Unit	Min	Тур	Мах
Case Operating Temperature Range	Тс	٥C	-10		70
Power Supply Voltage	Vcc	V	3.135	3.3	3.465
Data rate		Gb/s	-	1.25/1.0625	-

Specifications(tested under recommended operating conditions , unless otherwise noted)

Parameter		Symbol	Unit	Min	Тур	Max	Notes
		Electrical C	Characte	eristics			
Supply Current	Tx Section Rx Section	— Icc	mA	-	-	300	1
Single Ended Data Inpu	t Swing		mV	150	-	1100	
Single Ended Data Outp	out Swing		mV	300	-	600	
TX_fault /LOS output (1		VOH	v	2.0	-	Vcc	
	TL)	VOL	v	0	-	0.8	
TX_disable input (TTL)		VOH	v	2.0	-	Vcc	
		VOL	V	0	-	0.8	
	C	Optical transmi	tter Cha	aracter	istics		
				-9.5	-6	-3	550m 850nm VCSEL-LD
				-9	-5	-3	20km 1310nm FP-LD
				-5	-3	0	40km 1310nm FP-LD
				-4	-1	+1	40km 1550nm DFB-LD
Launch Optical Power		Ро	dBm	-2	0	+3	40km 1310nm DFB-LD
				-2	0	+3	80km 1550nm DFB-LD
				0	+1	+3	120km 1550nm DFB-LD
				830	850	860	VCSEL LD
				1270	1310	1355	FP-LD
Center Wavelength Ran	ge	λc	nm	1280	1310	1340	DFB-LD
				1500	1550	1580	DFB-LD
Extinction Ratio		EX	dB	9			
						0.85	VCSEL LD
Spectral Width		Δλ	nm			4	FP-LD
						1	DFB-LD

Side Mode Suppression Rat	io	SMSR	dB	30		DFB-LD	
Contributed Total Jitter add	led at TP2	τJ	UI	JI 0.284		2	
Relative Intensity Noise		RIN	dB/Hz		-120	3	
Eye Diagram Complies with IEEE802.3z eye masks when filtered							
Dispersion Penalty			dB		1		
Optical Rise/Fall Time		Trise/Tfall	ps		260	4	
Optical receiver Characteristics							
					-18	550m	5
			dBm		-20	1310nm 20km	
					-20	1550nm 40km	
Receiver Sensitivity		S			-23	1310nm 40km	
Receiver Sensitivity		5			-25	1550nm 80km	
					-31	1550nm 120km	APD
			-	0		550m	
Overload Input Optical Pow	/er	Pin	dBm	-3		15km ~80km	
				-9		120km APD	
Opt	ical Dessert			S			
LOS Optical Assert			dB	-35		15km ~80km PIN	
Ор			dB	-45		120km APD	
LOS Hyste	eresis		dB	0.5 3	5	6	

Note1. The supply current includes SFP module's supply current and test board working current.

Note2. TP refers to the compliance point specified in IEEE802.3z, section 38.2.1.

Note3. RIN is the laser noise, integrated over a specified bandwidth, measured relative to average optical power with 12dB return loss. For multimode application, the RIN is better than -117dB/Hz.

Note4. Optical transition time is the time interval required for the rising or falling edge of an optical pulse to transition between the 20% and 80% amplitudes relative to the logical 1 and 0 levels

Note5. Measured with a PRBS 223-1 test pattern, @1.25Gb/s, EX=10dB, BER<10-12.

Note6. The LOS Hysteresis to minimize "chatter" on the output line. In principle, Hysteresis alone does not guarantee chatterfree operation

Timing and Electrical

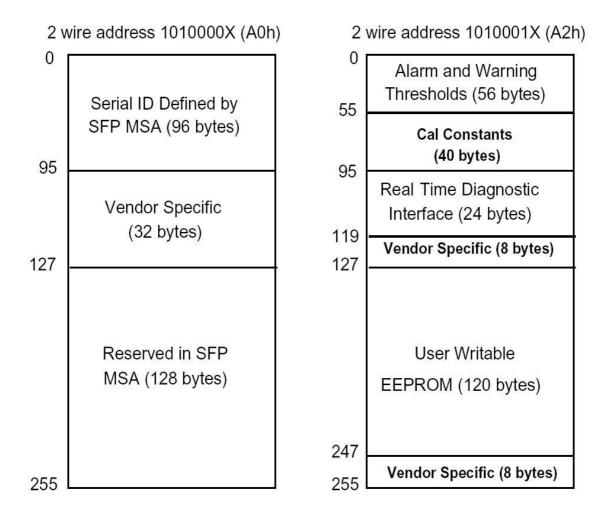
Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	$V_{\rm H}$	2		Vcc	V
MOD_DEF (0:2)-Low	VL			0.8	V

Diagnostics

Diagnostics Specification

Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	°C	±3° C	Internal / External
Voltage	3.0 to 3.6	V	±3%	Internal / External
Bias Current	0 to 100	mA	$\pm 10\%$	Internal / External
TX Power	-5 to 0	dBm	$\pm 3 dB$	Internal / External
RX Power	-23 to -3	dBm	$\pm 3 dB$	Internal / External



Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

Pin Description

r			
20	VccT	1	VccT
19	TD-	2	Tx_Fault
18	TD+	3	Tx_disable
17	Vcct	4	MOD-DEF(2)
16	Vcct	5	MOD-DEF(1)
15	VccR	6	MOD-DEF(0)
14	VccR	7	Rate Select
13	RD+	8	LOS
12	RD-	9	VccR
11	VccR	10	VccR
	Top of Board	(As Vi	Bottom of Board ewed Through Top of Board)

Pin Descriptions

Pin	Signal	Description	Plug Seq.	Notes
1	VEET	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VEER	Receiver ground	1	
10	VEER	Receiver ground	1	
11	VEER	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VEER	Receiver ground	1	
15	Vccr	Receiver Power Supply	2	
16	Vсст	Transmitter Power Supply	2	
17	V _{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In 3		Note 6
19	TD-	Inv. Transmit Data In	3 Note	
20	VEET	Transmitter Ground	1	

Notes:

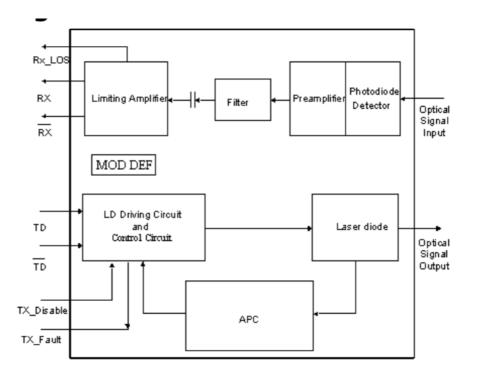
Plug Seq.: Pin engagement sequence during hot plugging.

- TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k \sim 10k\Omega$ resistor. Its states are:

Low (0 to 0.8V):	Transmitter on
(>0.8V, < 2.0V):	Undefined
High (2.0 to 3.465V):	Transmitter
Disabled Open:	Transmitter
Disabled	

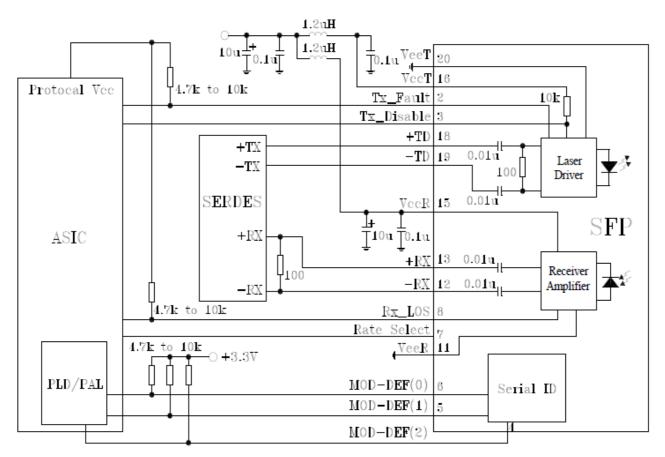
3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k \sim 10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

Mod-Def 0 is grounded by the module to indicate that the module is

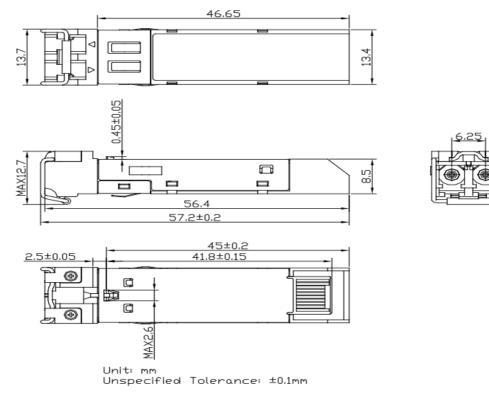

present Mod-Def 1 is the clock line of two wire serial interface for serial $\ensuremath{\mathrm{ID}}$

Mod-Def 2 is the data line of two wire serial interface for serial ID

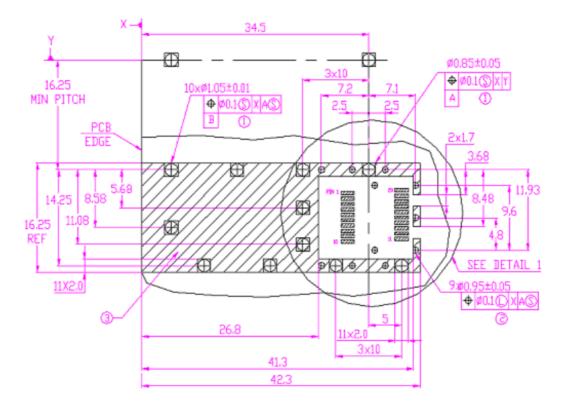
- 4) LOS is an open collector output, which should be pulled up with a $4.7k \sim 10k\Omega$ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

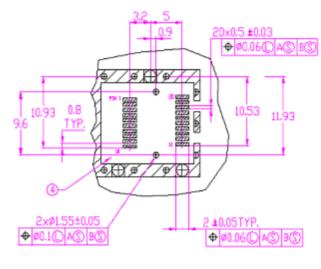


Block Diagram



Typical Application Circuit




Package Outline

PCB Layout Recommendation

DETAIL 1

NOTES:

1.PAILS AND VIAS ARE CHASSIS GROUND.

2.THROUGH HOLES, PLATING OPTIONAL.

3.HATCHED AREA DENOTES COMPONENT AND TRACE KEEPDUT (EXCEPT CHASSIS GROUND).

4.AREA DENDTES COMPONENT KEEPOUT (TRACES ALLOWED).

DIMENSIONS IN MILLIMETERS

Feature	Test Method	Performance				
Electrostatic Discharge	MIL-STD-883E	Class 1 (>1.5kV) – Human Body Model				
(ESD) to the Electrical Pins	Method 3015.7					
Electrostatic Discharge (ESD) Immunity	IEC61000-4-2	Class 2 (>4.0kV)				
	CISPR22 ITE					
	Class B					
Electromagnetic Interference	FCC Class B	Compliant with standard				
(EMI)	CENELEC	Compliant with standard				
	EN55022					
	VCCI Class 1					
	IEC61000-4-3	Typically show no measurable effect from a 3 V/m field swept				
Immunity	Class 2	from 80 to 1000MHz applied to the transceiver without a				
		chassis enclosure.				
		FDA 0322110-00				
Safety		CDRH 21-CFR 1040 Class 1				
	UL E239070					
		TUV-GS B0501 54481 001				
		CE E8 0501 54481 004				