

DATA SHEET

UTX10Z8D

10Gbps 1550nm XFP 80km Transceiver Overview

UTX10Z8D Small Form Factor 10 G (XFP) transceivers are compliant with the current XFP Multi-Source Agreement (MSA) Specification1. They comply with 10-Gigabit Ethernet 10GBASE-LR/LW per IEEE 802.3ae and 10G Fiber Channel. Digital diagnostics functions are available via a 2-wire serial interface, as specified in the XFP MSA. The transceiver is RoHS compliant and lead-free per Directive 2002/95/EC3.

Product Features

- XFI Loopback Mode
- Supports 9.95Gbps to 11.3Gbps bit rates
- Power dissipation <3.0W
- Cooled 1550nm EML and APD receiver
- Single +3.3V power supply
- Hot-pluggable XFP footprint
- Maximum link length of 80km
- No Reference Clock required
- Operating temperature range:
 Commercial: -5°C~+70°C
- RoHS Compliant
- Full Duplex LC connector
- Built-in digital diagnostic functions
- Standard bail release mechanism

Applications

- 10GBASE-ZR/ZW 10G Ethernet
- 10G Fiber Channel
- SONET OC-192 &SDH STM 64

Ordering Information

				S	ecificat	ions			
Part. No	Pack	Rate (Gbps)	Tx (nm)	Po (dBm)	RX	Sen (dBm)	Temp (°C)	Reach (km)	DDM
UTX10Z8D	XFP	10.3125	1550	0~-5	PIN	<-24	-5~70	80	Y

For More Information:

Room 608, Yuanzheng Building B, Nanshan District, Shenzhen, China, 518052

General Specifications

Parameter	Sym bol	Min	Тур	Max	Unit	Remarks
Data Rate	DR		10.3125		Gbps	
Bit Error Rate	BER			10-12		
Operating Temperature	T _{OP}	-5		70	°C	
Storage Temperature	T _{STO}	- 40		85	°C	
Supply Current	Is			450	mA	
Supply Voltage – 1.8V supply	Vcc2	1.71		1.89	V	
Supply Voltage – 3.3V supply	Vcc3	3.13		3.47	V	
Supply Current – 1.8V supply	lcc2			180	mA	
Supply Current – 3.3V supply	Icc3			640	mA	
Supply Voltage – 1.8V supply	Vcc2	1.71		1.89	V	
Module total power	Р		2.5		W	

Optical Characteristics – Transmitter

V_{CC} =3.14V to 3.46V, T_{C} =-5°C to 70°C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Output Optical Power	P_{TX}	0		5	dBm	
Optical Center Wavelength	λς	1590		1570	nm	
Extinction Ratio	ER	8.2			dB	
Optical Rise/Fall Time (20% - 80%)	T _{RF_IN}			30	ps	
Relative Intensity Noise	RIN			- 130	dB/Hz	
Transmitter and Dispersion Penalty	TDP			3.2	dBm	
Output Eye			Compliant with	IEEE802.3 stan	dard	

Optical Characteristics – Receiver

$V_{\text{CC}}{=}3.14V$ to 3.46V, $T_{\text{C}}{=}{-}5^{\circ}\text{C}$ to 70°C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Receiver Sensitivity	S			-24	dBm	
Optical Center Wavelength	λc	1270		1610	nm	
Receiver Sensitivity	R _{X_SEN}			- 15	dBm	
Optical Power Input Overload	P _{in-max}	+0.5			dbm	
Receiver Reflectance	R			-27	dB	
LOS Assert	P _{LOS_A}	- 37			dBm	
LOS De-Assert	P _{LOS_D}			– 27	dBm	

Electrical Characteristics – Transmitter

V_{CC} =3.14V to 3.46V, T_{C} =-5°C to 70°C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Input differential impedance	R_{IN}		100		Ω	
Transmit differential output Voltage		120		820	mV	
Transmit disable voltage	V _D	V _{CC} -0.5		V _{CC}	V	
Transmit enable voltage	V _{EN}	V _{EE}		V _{EE} +0.8	٧	
Transmit disable assert time				10	us	

Electrical Characteristics - Receiver

V_{CC} =3.14V to 3.46V, T_{C} =-5°C to 70°C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Differential data out put swing	V_{OUT_PP}	340	650	850	mV	
Data output rise/fall time (20%-80%)	T_R			38	ps	
LOS Fault	V_{LOS_Fault}	V _{CC} – 0.5		V _{CC_HOST}	V	
LOS Normal	V _{LOS_Normal}	V _{EE}		V _{EE} +0.5	V	

Notes:

- 1) The supply current is XFP module's working current.
- 2) For the measurements, the device was driven with 10Gbps data pattern with 2³¹-1 PRBS payload.
- 3) Optical transition time is the time interval required for the rising or falling edge of an optical pulse to transition between the 20% and 80% amplitudes relative to the logical 1 and 0 levels
- 4) Measured with a PRBS 2³¹-1 test pattern, @10Gbps, ER=3.5dB, BER<10⁻¹²
- 5) The LOS Hysteresis minimizes 'chatter' on the output line. In principle, Hysteresis alone does not guarantee chatter-free operation.

Transmitter Section

The FP driver accepts differential input data and provide bias and modulation currents for driving a laser. An automatic power-control (APC) feedback loop is incorporated to maintain a constant average optical power.

TX DISABLE

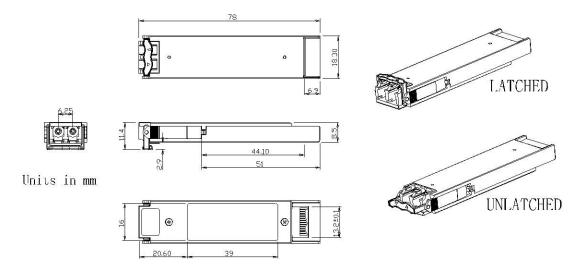
The TX_DISABLE signal is high (TTL logic "1") to turn off the laser output. The laser will turn on within 1ms when TX_DISABLE is low (TTL logic "0").

TX FAULT

When the TX_FAULT signal is high, output indicates a laser fault of some kind. Low indicates normal operation.

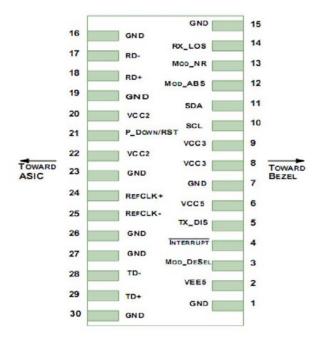
Receiver Section

The receiver utilizes a PIN detector integrated with a trans-impedance preamplifier in an OSA. This OSA is connected to a Limiting Amplifier which providing post-amplification quantization, and optical signal detection. The limiting Amplifier is AC-coupled to the



transimpedance amplifier, with internal 100Ω differential termination.

Receive Loss (RX_LOS)


The RX_LOS is high (logic "1") when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in TTL level.

Dimensions

ALL DIMENSIONS ARE ± 0.2 mm UNLESS OTHERWISE SPECIFIED UNIT: mm

Electrical Pad Layout

Pin	Signal Name	Description	Plug Seq.	Notes
1	GND	Module Ground		1
2	VEE5	Optional –5.2 Power Supply – Not required		
		Module De-select; When held low allows the		
3	Mod-Desel	module to respond to 2-wire serial interface	LVTTL-I	
		commands		
		Interrupt (bar); Indicates presence of an		
4	Interrupt	important condition which can	LVTTL-O	2
		be read over the serial 2-wire interface		
5	TX_DIS	Transmitter Disable; Transmitter laser source	LVTTL-I	
<u> </u>	17_010	turned off	LV11L-1	
6	VCC5	+5 Power Supply		
7	GND	Module Ground		1
8	VCC3	+3.3V Power Supply		
9	VCC3	+3.3V Power Supply		
10	SCL	Serial 2-wire interface clock	LVTTL-I	2
11	SDA	Serial 2-wire interface data line	LVTTL-I/O	2
12	Mod_Abs	Module Absent; Indicates module is not	LVTTL-I	2
12	Wod_7 to 3	present. Grounded in the module.		
13	13 Mod_NR	Module Not Ready; defines it as a logical OR	LVTTL-I	2
	Wod_III	between RX_LOS and Loss of Lock in TX/RX.		
14	RX_LOS	Receiver Loss of Signal indicator	LVTTL-I	2
15	GND	Module Ground		1
16	GND	Module Ground		1
17	RD-	Receiver inverted data output	CML-O	
18	RD+	Receiver non-inverted data output	CML-O	
19	GND	Module Ground		1
20	VCC2	+1.8V Power Supply – Not required		
		Power Down; When high, places the module in		
		the low power stand-by		
21	P_Down/RST	mode and on the falling edge of P_Down	LVTTL-I	
	I _Bown//to1	initiates a module reset	LV11L-1	
		Reset; The falling edge initiates a complete		
		reset of the module		
		including the 2-wire serial interface, equivalent		
22	VCC2	to a power cycle.		
		+1.8V Power Supply – Not required		
23	GND	Module Ground		1
24	RefCLK+	Reference Clock non-inverted input, AC	PECL-I	3
<u> </u>	Neiolikt	coupled on the host board – Not required	. 2021	Ŭ

UTX10Z8D

25	RefCLK-	Reference Clock inverted input, AC coupled on	PECL-I	3
		the host board – Not required	PECL-I	3
26	GND	Module Ground		1
27	GND	Module Ground		1
28	TD-	Transmitter inverted data input	CML-I	
29	TD+	Transmitter non-inverted data input	CML-I	
30	GND	Module Ground		1

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1) Module circuit ground is isolated from module chassis ground within the module.
- 2) Open collector; should be pulled up with 4.7k 10kohms on host board to a voltage between 3.15V and 3.6V.
- 3) A Reference Clock input is not required by the UTX10Z8D. If present, it will be ignored.

References

- 1. IEEE standard 802.3. IEEE Standard Department, 2005.
- 2. Small Form Factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), September 2000.