

DATA SHEET

UN-QSFP+ SR4

40Gbps-QSFP+ -850nm-100M Overview

UN-QSFP+ SR4 are designed for use in 40 Gigabit per second links over multimode fiber. They are compliant with the QSFP+ MSA and IEEE 802.3ba 40GBASE-SR4

Product Features

- High Channel Capacity: 40Gbps per module
- Up to 11.2Gbps Data rate per channel
- MTP/MPO optical connector
- High Reliability 850nm VCSEL technology
- Maximum link length of 100m links on OM3 multimode fiber or 150m links on OM4 multimode fiber
- Hot Pluggable
- Power dissipation < 1.5 W
- Commercial operating case temperature range: -5°C to 70°C
- RoHS-6 Compliant

Applications

- 40GB Ethernet links
- Infiniband QDR, DDR and SDR
- 40G Telecom connections

Ordering Information

Part Number	Description			
UTQ40SRD designed for use in 40 Gigabit per second links over multimode fiber.				
For More Information:				
UNIVISO TECHNOLOGIES& DEVELOP LIMITED				

UNIVISO TECHNOLOGIES& DEVELOP LIMITED

Room 608, Yuanzheng Building B, Nanshan District, Shenzhen, China, 518052

Email: bruce.ke@szuniviso.com

Specification:

Absolute Maximum Ratings							
Parameter Symbol Min Max Unit							
Storage Ambient Temperature	T _{STG}	-40	85	℃			
Operating Humidity	Ho	5	95	%			
Power Supply Voltage	Vcc	-0.5	3.6	V			

Recommended Operating Conditions					
Parameter	Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Tc	0		70	$^{\circ}$
Power Supply Voltage	Vcc	3.135	3.3	3.465	V
Power Supply Current	ICC			450	mA
Aggregate Bit Rate	BRAVE		41.25		Gbps
Data Rate,each Lane	BRAVE		10.3125	11.2	Gbps
Transmission Distance	TD:OM3	-	100	-	m
Transmission Distance	TD:OM4		150		m

		Electrical	transmit	ter Charac	teristics		
Par	ameter	Symbol	Min	Typical	Max	Unit	Notes
Input Impedance (Differential)		Zin	85	100	115	ohms	Rin > 100 kohms @ DC
Differential data	a input swing	Vin,pp	180		1000	mV	
TV District	Disable	VIH	2		Vcc+0.3	V	
TX Disable	Enable	VIL	0		0.8		
TX FAULT	Fault	VOH	2.4		Vcc+0.3	V	
	Normal	VOL	0		0.8		
		Electric	al receive	r Characte	ristics		
Parameter		Symbol	Min	Typical	Max	Unit	Notes
Input Impedan	ce (Differential)	Zin	85	100	115	ohms	
Differential data	a output swing	Vout,pp	300		850	mV	
	LOS	VoH	2.4		Vcc+0.3	V	
RX_LOS	Normal	VoL	0		0.8		
Rise Time	Rise Time				30	ps	10%~90%
Fall Time		tf			30	ps	10%~90%

UTQ40SRD

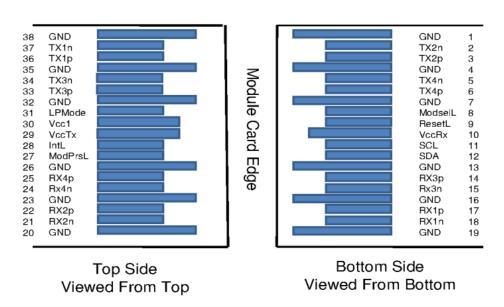
Optical transmitter Characteristics						
Parameter	Symbol	Min	Typical	Max	Unit	Notes
Average Launch Power each lane	Pavg	-7.6		1	dBm	
Per Lane Bit Rate	Er		3		dB	
Center Wavelength	λ0	840	850	860	nm	
Spectral Width(-20dB)	Δλ			0.65	nm	
Average launch Power off each lane	Poff			-30	dBm	
Transmitter and Dispersion Penalty each lane	TDP			3.5	dB	
Optical Return Loss Tolerance	ORL			12	dB	
Output Eye Diagram	IEEE 802.3ba-2010 Compliant					

	Optical receiver Characteristics						
	Parameter	Symbol	Min	Typical	Max	Unit	Notes
Receiver Wavelength		λin	840	850	860	nm	
Receiver sensitivity in OMA, each lane		Pmins			-9.5	dBm	
Input Saturation Power (Overload)		Psat	2.4			dBm	
Receive	er reflectance	Rr			-12	dB	
LOS	Optical De-assert	LOSD			-12	dDm	
LUS	Optical Assert	LOSA	-30			- dBm	

Digital Diagnostic Monitoring Information

UN-QSFP+ SR4 support the 2-wire serial communication protocol as defined in the QSFP+ MSA, which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power



Transceiver supply voltage

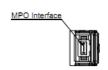
It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range. The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the QSFP+ transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the QSFP+ transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 00h to the maximum address of the memory.

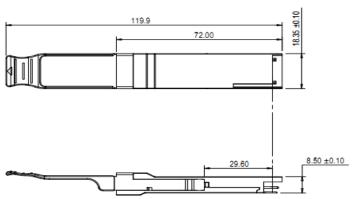
This clause defines the Memory Map for QSFP+ transceiver used for serial ID, digital monitoring and certain control functions. The interface is mandatory for all QSFP+ devices. The memory map has been changed in order to accommodate 4 optical channels and limit the required memory space. The structure of the memory is shown in Figure 2 -QSFP+ Memory Map. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, e.g. Interrupt Flags and Monitors. Less time critical entries, e.g. serial ID information and threshold settings, are available with the Page Select function. The structure also provides address expansion by adding additional upper pages as needed. For example, in Figure 2 upper pages 01 and 02 are optional. Upper page 01 allows implementation of Application Select Table, and upper page 02 provides user read/write space. The lower page and upper pages 00 and 03 are always implemented. The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a "one-time-read" for all data related to an interrupt situation. After an Interrupt, IntL, has been asserted, the host can read out the flag field to determine the effected channel and type of flag.For more detailed information including memory map definitions, please see the QSFP+ MSA Specification.

Pin Definition

Figure1 QSFP MSA-compliant 38-pin connector

Pin	Symbol	Name/Description	Notes
1	GND	Transmitter Ground (Common with Receiver Ground)	1
2	TX2N	Transmitter Inverted Data Input	
3	TX2P	Transmitter Non-Inverted Data Input	
4	GND	Ground	1
5	TX4N	Transmitter Inverted Data Input	
6	TX4P	Transmitter Non-Inverted Data Input	
7	GND	Ground	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	Vcc Rx	+3.3 V Power supply receiver	2
11	SCL	2-wire serial interface clock	
12	SDA	2-wire serial interface data	
13	GND	Ground	
14	RX3P	Receiver Non-Inverted Data Output	
15	RX3N	Receiver Inverted Data Output	
16	GND	Ground	1
17	RX1P	Receiver Non-Inverted Data Output	
18	RX1N	Receiver Inverted Data Output	
19	GND	Ground	1
20	GND	Ground	1
21	RX2N	Receiver Inverted Data Output	
22	RX2P	Receiver Non-Inverted Data Output	
23	GND	Ground	1
24	RX4N	Receiver Inverted Data Output	1
25	RX4P	Receiver Non-Inverted Data Output	
26	GND	Ground	1
27	ModPrsL	Module Present	
28	IntL	Interrupt	
29	Vcc Tx	+3.3 V Power supply transmitter	2
30	Vcc1	+3.3 V Power Supply	2
31	LPMode	Low Power Mode	
32	GND	Ground	1
33	TX3P	Transmitter Non-Inverted Data Input	
34	TX3N	Transmitter Inverted Data input	
35	GND	Ground	1
36	TX1P	Transmitter Non-Inverted Data Input	
37	TX1N	Transmitter Inverted Data input	
38	GND	Ground	1


Table 1: QSFP Module PIN Definition


Notes:

- 1. All Ground (GND) are common within the QSFP+ module and all module voltages are referenced to this potential unless noted otherwise. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. The connector pins are each rated for a maximum current of 500mA.

Package Outline

Dimensions are in millimeters. All dimensions are ±0.1mm unless otherwise specified. (Unit: mm)

Regulatory Compliance

Feature	Test	Method
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883E Method 3015.7	Class 1(>1000V for SFI pins, >2000Vfor other pins.)
Electrostatic Discharge (ESD) Immunity	IEC61000-4-2	Class 2(>4.0kV)
Electromagnetic Interference (EMI)	CISPR22 ITE Class B FCC Class B CENELEC EN55022 VCCI Class 1	Comply with standard
Immunity	IEC61000-4-3	Comply with standard
Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN (IEC) 60825-1,2	Compatible with Class I laser Product