

UTACQ1H-Q1H-X

100G QSFP28 to QSFP28 850nm AOC, 1~300 meters

Features

- Hot-pluggable QSFP28 form factor
- 4 high-speed full duplex channels
- Supports 103.1Gb/s aggregate bit rate
- ♦ 4x25Gbps 850nm VCSEL laser
- QSFP28 MSA compliant
- ◆ Operating environment temperature -5 ~ 70°C
- Low power dissipation:<3.5W per cable end(<2.5W with CDRs off)
- Available in lengths of 1 to 100 meters
- RoHS-6 compliant

Application

- 100 Gigabit Ethernet links
- Infiniband interconnect
- Data center cabling infrastructure
- High density connections between networking equipment

Standard

- SFF-8431 SFP+ Electrical MSA
- SFF-8432 SFP+ Mechanical MSA
- RoHS complaint

Description

QSFP28-AOCxM family is QSFP28 4-channel active optical cables (AOC) for 100G Ethernet (100GbE) applications. This full-duplex optical assembly offers 4 independent transmit and receive channels, each capable of up to 25Gbps for an aggregate bandwidth of 100Gbps. The 100G QSFP28 AOC cables can be used as a direct replacement for traditional QSFP28 DAC (direct attach copper cables) and QSFP28 transceivers of short reach while providing lighter weight, improved signal integrity, lower cost, and performance value. The optical end is never exposed to a data center environment and therefore does not require cleaning or special handling. They are designed expressed for high speed, high density and low power consumption for today's

data center networking applications.

PRODUCT SELECTION (Standard Lengths*)

UTACQ1H-Q1H-01	1-meter cable
UTACQ1H-Q1H-02	2-meter cable
UTACQ1H-Q1H-03	3-meter cable
UTACQ1H-Q1H-05	5-meter cable
UTACQ1H-Q1H-07	7-meter cable
UTACQ1H-Q1H-10	10-meter cable
UTACQ1H-Q1H-x	
UTACQ1H-Q1H-300	300-meter cable

*For availability of additional cable lengths, please contact .

Specification

Absolute Maximum Ratings							
Parameter	neter Symbol Min Max Unit						
Storage Temperature	Ts	-40	+85	°C			
Operating Humidity	RH	0	85	%			
Supply Voltage	Vcc	-0.5	4.0	V			

Recommended Operating Conditions						
Parameter Symbol Min Typical Max Unit						
Operating Case Temperature	Тс	0		+70	°C	
Supply Voltage	Vcc	3.14	3.3	3.46	V	
Supply Current	lcc			300	mA	
Bit Rate	BR		25.78		Each channel	

Electrical Characteristics						
Parameter	Symbol	Min	Typical	Мах	Unit	Notes
Transmitter Characteristics						
Signaling rate, each lane	DRpl		25.78125		Gb/s	1
Center Wavelengthe	λ	840	850	860	nm	
RMS Spectral Width			0.6		nm	
Average launch power, each lane	Pavg	-8.4		2.4	dBm	
Optical modulation amplitude, each lane (OMA)	OMA	-6.4		3	dBm	

Confidenti

UTACQ1H-Q1H-x

Extinction ratio	ER	2			dB	
Average Launch Power of OFF Transmitter, per Lane	RIN			-30	dBm	
Encircled Flux	FLX	:	>86% at 19 u <30% at 4.5 u	um um	dBm	
Optical return loss tolerance				12	dB	
Transmitter eye mask {X1, X2, X3, Y1, Y2, Y3}		{0.3,0.3	38,0.45,0.35,	0.41,0.5}		2
Receiver Characteristics						
Receive Rate for Each Lane	DRpl		25.78125		Gb/s	3
Four Lane Wavelength Range	λ	840	850	860	nm	
Overload Input Optical Power	Pmax	3.4			dBm	
Average Receive Power for Each Lane	Pin	-10.3		2.4	dBm	4
Receiver Sensitivity(OMA)per lane	Psens		-5.2		dB	
Recevier Reflectance	Rfl			-12	dB	
Receiver Eye MaskDefinition {X1, X2, X3, Y1, Y2,Y3}		{0.28,0.5,0.5,0.33,0.33,0.4}			5	
Los De-Assert	Pd			-13	dBm	
Los Assert	Ра	-30			dBm	
Loss Hysteresis	Pd-Pa	0.5			dBm	

Note1. Transmitter consists of 4 lasers operating at a maximum speed of 25.78125Gb/s ±100ppm each.

Note2. Hit Ratio 1.5 x 10-3 hits/sample.

Note3. Receiver consists of 4 photodetectors operating at a maximum speed of 25.78125Gb/s ±100ppm each.

Note4. Minimum value is informative only and not the principal indicator of signal strength.

Note5. Hit Ratio 5 x 10-5 hits/sample.

Pin definition

The QSFP+ modules are hot-pluggable. Hot pluggable refers to plugging in or unplugging a module while the host board is powered. The QSFP+ host connector is a 0.8 mm pitch 20 position right angle improved connector specified by SFF-8431, or stacked connector with equivalent electrical performance. QSFP+ module contacts mates with the host in the order of ground, power, followed by signal as illustrated by Figure 1 and the contact sequence order listed in Table 1.

Top Side Viewed From Top Bottom Side Viewed From Bottom

Figure 1	QSFP+	Pad	assignment	Тор	View
----------	-------	-----	------------	-----	------

Table 1				
Pin	Symbol	Name/Description	Notes	
1	GND	Transmitter Ground (Common with Receiver Ground)	1	
2	TX2N	Transmitter Inverted Data Input		
3	TX2P	Transmitter Non-Inverted Data Input		
4	GND	Ground	1	
5	TX4N	Transmitter Inverted Data Input		
6	TX4P	Transmitter Non-Inverted Data Input		
7	GND	Ground	1	
8	ModSelL	Module Select		
9	ResetL	Module Reset		
10	Vcc Rx	+3.3 V Power supply receiver	2	
11	SCL	2-wire serial interface clock		
12	SDA	2-wire serial interface data		
13	GND	Ground		
14	RX3P	Receiver Non-Inverted Data Output		
15	RX3N	Receiver Inverted Data Output		
16	GND	Ground	1	
17	RX1P	Receiver Non-Inverted Data Output		
18	RX1N	Receiver Inverted Data Output		
19	GND	Ground		
20	GND	Ground	1	
21	RX2N	Receiver Inverted Data Output		
22	RX2P	Receiver Non-Inverted Data Output		

Confidenti

UTACQ1H-Q1H-x

23	GND	Ground	1
24	RX4N	Receiver Inverted Data Output	1
25	RX4P	Receiver Non-Inverted Data Output	
26	GND	Ground	1
27	ModPrsL	Module Present	
28	IntL	Interrupt	
29	Vcc Tx	+3.3 V Power supply transmitter	2
30	Vcc1	+3.3 V Power Supply	2
31	LPMode	Low Power Mode	
32	GND	Ground	1
33	TX3P	Transmitter Non-Inverted Data Input	
34	TX3N	Transmitter Inverted Data input	
35	GND	Ground	1
36	TX1P	Transmitter Non-Inverted Data Input	
37	TX1N	Transmitter Inverted Data input	
38	GND	Ground	1

QSFP+ Module PIN Definition

Power Seq.: Pin engagement sequence during hot plugging.

Notes:

1. GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.

2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 3 below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

Mechanical Drawing

Dimensions are in millimeters. All dimensions are ±0.1mm unless otherwise specified. (unit: mm)

Regulatory Compliance

Feature	Test	Method
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883E Method 3015.7	Class 1(>1000V for SFI pins, >2000Vfor other pins.)
Electrostatic Discharge (ESD) Immunity	IEC61000-4-2	Class 2(>4.0kV)
Electromagnetic Interference (EMI)	CISPR22 ITE Class B FCC Class B CENELEC EN55022 VCCI Class 1	Comply with standard
Immunity	IEC61000-4-3	Comply with standard
Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN (IEC) 60825-1,2	Compatible with Class I laser Product